IGRP и **EIGRP**

Cisco Routing Protocol

Содержание

IGRP

Interior Gateway Routing Protocol – внутренний протокол маршрутизации

EIGRP

- EIGRP (Enhanced IGRP)

 – усовершенствованный внутренний протокол маршрутизации
- EIGRP концепция
 - ✓ Таблицы соседних роутеров
 - ✓ Топологические таблицы
 - ✓ Состояния маршрутов
 - ✓ Маркировка маршрутов

IGRP - background

IGRP – протокол внутренней маршрутизации

- разработан в 1986 году фирмой Cisco
- частный (proprietary) протокол

Причины появления IGRP?

- В то время не было никакой альтернативы для RIP
- Недостатки RIP:
 - ✓ Ограничение по метрике
 - максимум 15 хопов (16 хопов = недостижимая сеть)
 - Счетчик хопов не отражает производительность среды передачи
 - Выбирает наименьший путь по хопам вместо самого быстрого "лучшего пути"
 - ✓ Большая маршрутизация полная таблица маршрутизации каждые 30 сек

Цели IGRP/EIGRP

- устойчивость в больших сетях и недопустимость образования петель маршрутизации;
- восстановление работоспособности при изменениях в сетевой топологии быстрее чем в RIP;
- низкая загрузка сети служебным трафиком;
- возможность распределения потока данных между маршрутами с одинаковой стоимостью (метрикой) или пропорционально метрики

IGRP в целом

- Дистанционно-векторный протокол
 - используется только в пределах Автономной Системы
- составная метрика -> комбинация показателей

пропускная способность (Bandwidth)

■ задержка (Delay)

■ надежность (Reliability)

■ загрузка (Loading)

- Реализован механизм предотвращения цикла
- Поддержка множества неравно-метрических путей
- Более быстрая конвергенция (сходимость) чем у RIP

IGRP / EIGRP Delay

• Значения пропускной способности

- предположение: пропускная способность для последовательных линий сконфигурирована реальная
- иначе у всех последовательных каналов будет показатель Т1

МЕТРИКА

Пропускная способность	<u>BW_{EIGRP}</u>	\underline{BW}_{IGRP}
Спутник (500 Мбит/с)	5.120	20
Ethernet (100 Мбит/с)	256.000	100
Ethernet (10 Мбит/с)	256.000	1.000
Token Ring (4 Мбит/с)	640.000	2.500
Token Ring (16 Мбит/с)	160.000	625
FDDI (100 Мбит/с)	256.000	100
1.544 Mbps	1.657.856	6.476
128 kbps	20.000.000	78.125
64 kbps	40.000.000	156.250
56 kbps	45.714.176	178.571
10 kbps	256.000.000	1.000.000
1 kbps	2.560.000.000	10.000.000

IGRP / EIGRP Bandwidth

Пропускная способность (Bandwidth)

- Скорость канала измеряется: бит/сек
- значение по умолчанию для LANs
 - ✓ реальная полоса пропускания
- значение по умолчанию для последовательных линий
 - ✓ соответствует скорости 1,544 Мбит/с (для канала Т1)
 - ✓ Может конфигурироваться реальная скорость последовательных линии
 IIII
 - ✓ Команд Cisco на интерфейсе: Bandwidth <число в кбит/с>
- Для вычисления метрики берется минимальное значение скорости канала вдоль пути
 - √ BW_{IGRP} = (1 / bandwidth) * 10¹⁰
 - 10¹⁰ бит/c = 10 Тбит/c
 - ✓ $BW_{EIGRP} = (1 / bandwidth)*10^{17}*256$
- Диапазон от 1200 бит/сек до 10 терабит/сек

Bandwidth	BW _{EIGRP}	BW _{IGRP}		
Спутник (500 Мбит/с)	5 120	20		
1000 Mbit Ethernet	2 560	10		
100 Mbit Ethernet	25 600	100		
10 Mbit Ethernet	256 000	1 000		
Token Ring (16Мбит/с)	160 000	625		
Token Ring (4Мбит/с)	640 000	2 500		
FDDI 100	256 000	100		
последовательные каналы:				
1.544 Mbps	1 657 856	6 476		
128 kbps	20 000 000	78 135		
64 kbps	40 000 000	156 225		
56 kbps	45 714 176	178 571		
10 kbps	256 000 000	1 000 000		
1 kbps	2 560 000 000	10 000 000		

IGRP / EIGRP расчёт метрики

Задержка (Delay)

- измеряется: 10 мкс
 - ✓ Сумма задержек по пути передачи фиксируется в 32 битом поле, с инкрементом 39,1 нсек
 - ✓ все "1" → недостижимость получателя
- значение по умолчанию для LANs
 - ✓ соответствует реальной задержке
- значение по умолчанию для последовательных каналов
 - ✓ задержка 1.544Mbps (T1 line)
 - ✓ можно конфигурировать реальной задержку на последовательных каналах
 - команда cisco: delay <число в десятках мкс >
- Delay_{IGRP} = (delay/10)
- Delay_{FIGRP} = (delay/10)*256

Задержка	Delay _{EIGR}	Delay _{IGR}
Спутник (2 сек)	51 200 000	200 000
100 Mbit Ethernet (0,1 мс)	2 560	10
10 Mbit Ethernet (1 мс)	25 600	100
Token Ring 16 (0,6 мс)	16 000	62,5
Token Ring 4 (2,5 мс)	64 000	250
FDDI 100 (0,1 мс)	2 560	10
Token Ring 4 (2,5 мс)	64 000	250
последовательные каналы:		
1.544 Mbps (20 мс)	512	2 000
128 kbps (20 мс)	512	2 000
64 kbps (20 мс)	512	2 000
56 kbps (20 мс)	512	2 000
10 kbps (20 мс)	512	2 000
1 kbps (20 мс)	512	2 000

IGRP / EIGRP Reliability, Loading

Надежность (Reliability)

- Произвольное число
 - √ 255 → 100% → отличная надежность
 - √ 1 → 0% → самая плохая надежность между источником и адресатом
- Динамически измеряемая
 - ✓ keepalives посылают от интерфейса каждые 10 с, у кадра есть CRC
 - ✓ выборки вычисляются более 5 мин
 - ✓ интервал времени измерения может реконфигурироваться

Загрузка (Loading)

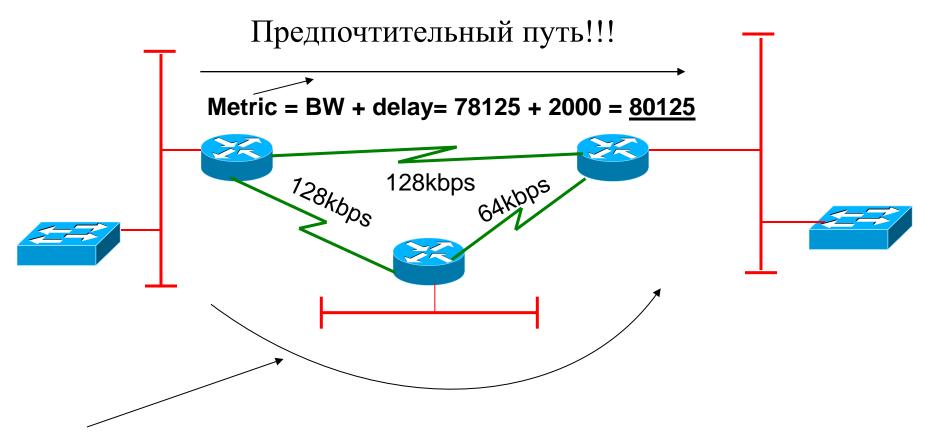
- произвольное число
 - ✓ диапазон значений от 1 до 255.
 - ✓ число 255 индицирует полную загрузку канала
- динамически измеряемая
 - ✓ вычисляется в течении более 5 минут
 - ✓ интервал времени измерения может реконфигурироваться

IGRP расчёт метрики

• Формула для вычислений

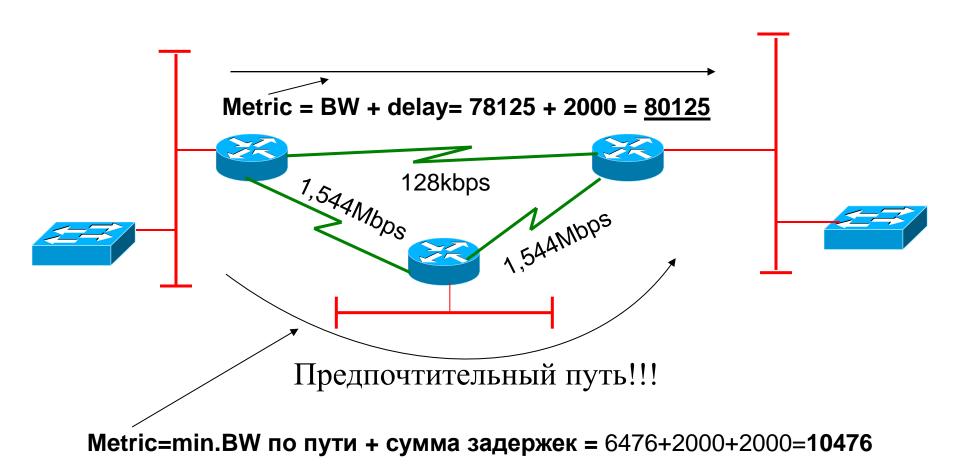
- по умолчанию:
 - ✓ k1=1, k2=0, k3=1, k4=0, k5=0
 - √ К1 К5 произвольные числа, которые могут быть конфигурированы

$$metric1 = k1 * \min BW_{IGRP} + \frac{k2 * \min BW_{IGRP}}{256 - load} + k3 * sumDelay_{IGRP}$$


Если k5 не равен 0, делается дополнительная операция

$$composite metric = metric 1*\frac{k5}{reliability + k4}$$

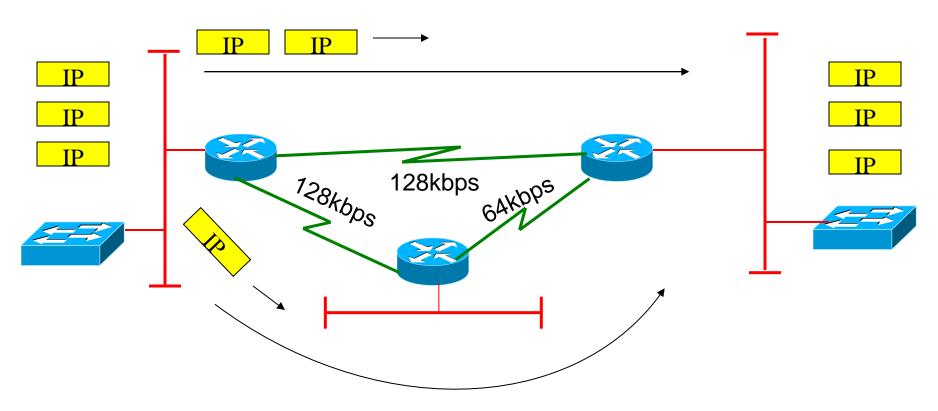
Для значений по умолчанию параметров k:


 $compositemetric = k1 * min BW_{IGRP} + k3 * sumDelay_{IGRP}$

IGRP-метрика, пример 1

Metric=min.BW по пути + сумма задержек = 156250 + 2000 + 2000 = 160250

IGRP-метрика, пример 2



Множество путей IGRP

- Поддержка до 6 параллельных путей (по умолчанию:4)
 - по умолчанию: тот же самый показатель необходим для параллельных путей
- Поддержка балансировки загрузки зависящей неравно от метрики
 - Предпосылка: конфигурация коэффициента дисперсии
 - В пределах указанной дисперсии (variance) альтернативный показатель пути должен быть лучше местного показателя

IGRP множество путей

Metric = BW + delay= 78125 + 2000 = 80125

Metric=min.BW по пути + сумма задержек = 156250 + 2000 + 2000 = 160250

IGRР метрика

- Routing updates включают в расчет число хопов и вычисления "по пути" MTU
 - => максимальный диаметр сети = 255 хопов (IP TTL-поле)
 - по умолчанию: 100 хопов

IGRP & маршруты по умолчанию

- RIP и OSPF используют 0.0.0.0 как маршрут по умолчанию (=>метрика не связана с расстоянием)
- IGRP позволяет отмечать сети как "кандидатов для значения по умолчанию"

IGRP предотвращение цикла & таймеры

- Периодические Routing updates
 - адрес назначения: 255.255.255.255
- Об изменении топологии сообщают triggered updates
 - Triggered updates рассылаются не согласно таймера update timer = 90 с, а в момент обнаружения изменения топологии
- Установки (Hold-downs)
- Разделенный горизонт (Split horizon)
 - предотвращает петлю маршрутизации между соседними роутерами
- Обратные отравленные обновления (Poison-reverse Updates)
 - Предотвращает большие петли маршрутизации согласно правила poisoning алгоритма
 - ✓ если метрика маршрута значительно увеличилась, то это следствие образования петли
 - ✓ Poison-reverse Updates отправляются в случае увеличения стоимости маршрута на коэффициент 1.1 или более

IGRP таймеры

- таймер обновлений (update timer): 90 секунд
 - определяет частоту update-сообщений, обновляющих маршруты
- таймер недействующих маршрутов (invalid timer): 3*90sec=270 c
 - определяет, сколько времени должен ожидать роутер при отсутствии update-сообщений о конкретном маршруте, прежде чем объявить этот маршрут недействующим
- ◆ таймер задержки изменений (Hold-time period):
 (3*90c)+10c=280c
 - Предписывает роутеру не передавать дальше в течении некоторого времени сообщения об изменениях, которые могут повлиять на маршруты
- Таймер удаления (flush timer): 7*90с=630с
 - если в течение данного времени не поступило сообщений о доступе к данному адресату, производится удаление записи о нем из таблицы маршрутизации

IGRP стек протокола

OSI стек

Содержание

- IGRP
- EIGRP

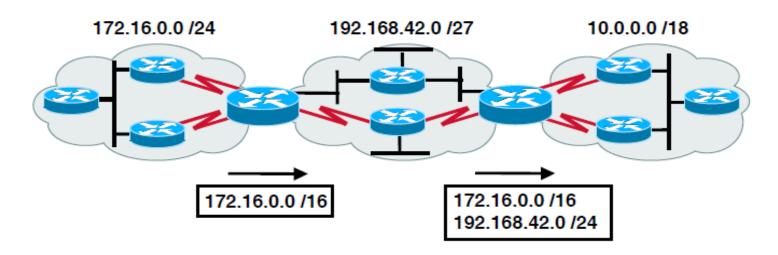
EIGRP характеристика

- Усовершенствованный дистанционно векторный протокол
- 100% предотвращает петли маршрутизации
- Быстрая сходимость
- Инкрементные обновления
 - Изменения в топологии (trigger routing updates) инициируют маршрутные обновления (а не периодические объявления)
 - Информация между роутерами ограничена только влияющими на маршрутизацию маршрутами
- Бесклассовая маршрутизация
 - поддерживает маски подсети переменной длины (VLSM) и несмежные сети
 - распространяет маску маршрутизации для каждой целевой сети
- Совместимый с существующими сетями IGRP
- Поддерживает несколько протоколов сетевого уровня
 - IP, IPX и Appletalk

EIGRP характеристика

EIGRP (Enhanced IGRP) – усовершенствованный дистанционно векторный протокол маршрутизации

- Частный/патентованный Cisco (proprietary)
- Сочетает достоинства алгоритмов векторных и состояния связи
- Вектор расстояния
 - √ достоинства:
 - малая мощность CPU и использование памяти, простая конфигурация
 - ✓ недостатки:
 - медленная конвергенция, маршрутизация «наверху», возможность циклов
- Состояние связи
 - ✓ достоинства:
 - быстрая конвергенция, нет циклов, лучшая метрика
 - ✓ недостатки:
 - высокая мощность CPU и использование памяти (SPF алгоритм, LS database), не столь облегчают конфигурирование (configure) (понятие области)


EIGRP

- Использует ту же метрику, что и IGRP
 - Совместим и целостно взаимодействует с IGRP
 - Позволяет импортировать маршруты в \ из IGRP
 - Можно постепенно внедрять EIGRP в сети IGRP
 - Интерпретирует маршруты IGRP как внешние и допускает их настр
- Сложная метрика обеспечивает эффективную маршрутизацию и устойчивость
 - особенно когда реализовано в сетях AppleTalk и IPX
- Используется "диффузионый алгоритм обновлений" DUAL Diffusing Update Algorithm. Автор J.J, Garcia-Luna-Aceves
 - Обнаруживает петлю
 - Находит альтернативные маршруты не дожидаясь обновлений от соседей
- Как вычисляет альтернативный маршрут?
 - Хранит таблицы соседних роутеров
 - Если подходящего маршрута нет, запрашивает соседей о поиске альтернативного маршрута
 - Эти запросы передаются до тех пор, пока не обнаружится альтернативный маршрут

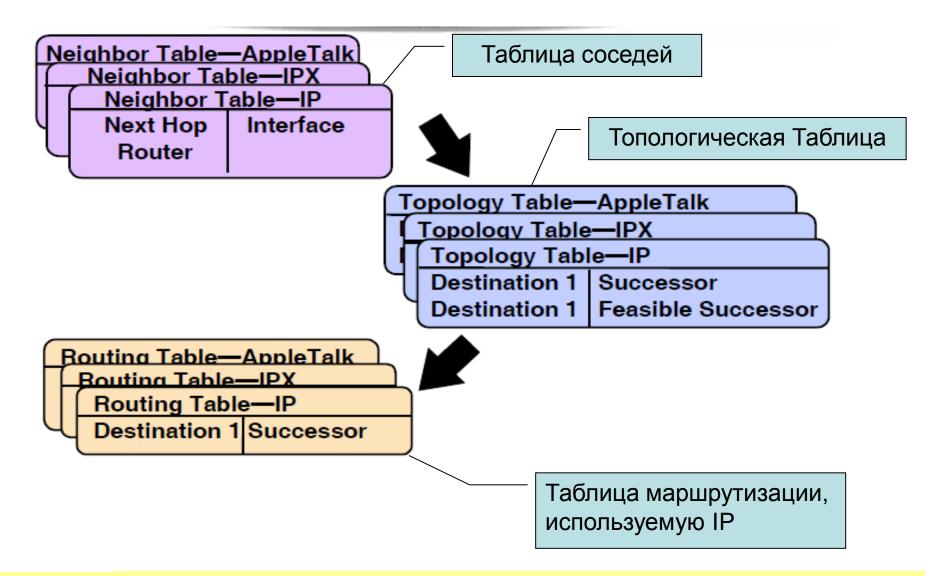
EIGRP

- Не выполняет периодических обновлений
 - Посылает обновленную информацию частями и только в случае изменении метрики маршрута
 - ✓ Частичные обновления (Event triggered updates)
 - Распространение Частичных обновлений автоматически ограничивается таким образом, что ее получают только маршрутизаторы, которым она необходима
- Multicasts в широковещательной сети, вместо широковещательной передачи
- Быстрая конвергенция (сходимость)
- Используйте пропускную способность канала и задержку
 - Метрика EIGRP = Метрика IGRP x 256 (32 бита по сравнению с 24 битами в IGRP)
- Поддерживает множество путей с неодинаковой метрикой
 - Используется для выравнивание нагрузки пропорционально метрике
- Ручное суммирование может быть сделано в любом интерфейс в любом роутере в пределах сети

Суммирование маршрутов

- Для уменьшения таблицы маршрутизации выполняется суммирование маршрута
 - По умолчанию → на границе классовой адресации сетей (Classful)
 - Вручную → произвольные границы сети устанавливаются вручную (Classles)
- Т.е. поддерживается создание суперсетей или агрегированные блоки адресов (сети).

EIGRP


• Бесклассовый протокол маршрутизации

- поддерживает суммирование маршрута
 - ✓ В пределах номера сети или на границе любых битов
- Update содержит сеть + префикс

• поддерживает несколько протоколов сетевого уровня

IP, IPX и Appletalk

EIGRP терминология

EIGRP терминология

Neighbor table — таблица соседей

- Каждый роутер поддерживает таблицу соседей, в которой перечислены смежные роутеры.
- Используется для двунаправленной передачи с непосредственно соединенными соседями

Тороlogy table - таблица топологии

 Каждый роутер поддерживает таблицу топологии, в которую включены записи всех маршрутов для всех мест назначения (destinations), которые изучил роутер.

Routing table -таблица маршрутизации

 EIGRP выбирает лучшие маршруты (successor - преемник) к месту назначения из таблицы топологии и помещает эти маршруты в таблицу маршрутизации

Successor (преемник)

• маршрут, выбранный как основной маршрут для достижения места назначения.

Successors (преемники)

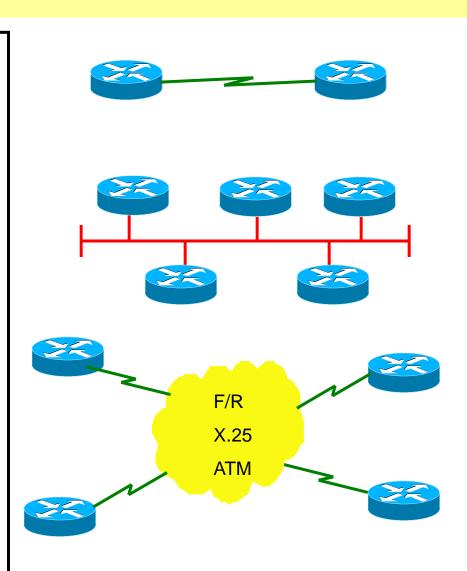
• записи, сохраненные в таблице маршрутизации

Feasible successor (FS) Выполнимый преемник —

- Резервный маршрут (FS), который помечается во времени одновременно с основным маршрутом
- FS маршрут идентифицируется и сохраняется только в таблице топологии,
- Могут быть сохранены несколько FS к одному месту назначения

EIGRP типы пакетов

EIGRP поддерживает пять универсальных типов пакетов


- **Hello**: Установить соседние отношения
 - ✓ Multicast пакеты, используются для обнаружения соседей, не требуют АСК подтверждения
- <u>Update</u>: Отправка маршрутные обновления (routing updates)
 - ✓ Multicast пакеты, когда новый маршрут обнаружен, или завершилась сходимость и маршрут пассивен.
 - ✓ Unicast пакеты, когда соседи синхронизируют таблицы топологии
 - Обновления отправляются не периодически, как в IGRP,
- **Query**: Запрос соседей о маршрутной информации
 - ✓ Мультикаст пакет, отправляется когда роутер не нашел маршрута, ни в таблице маршрутизации, ни FS маршрута в топологической таблице
- **Reply**: Ответ о запрошенной маршрутной информации
 - ✓ Unicast ответ инициатору Запроса.
- Ack: положительное подтверждение для надежности обмена

EIGRP Обнаружение/восстановление соседей

- Пока роутер получает HELLO приветствия от соседа, он считает его работоспособным
- Два роутера становятся соседями, когда они видят пакеты hello друг друга
 - Multicast адрес пакета hello = 224.0.0.10
- Периодичность следования hello пакетов зависит от сред/каналов передачи
- Hellos передаются каждые 5 секунд на следующих каналах:
 - Широковещательные среды : <u>Ethernet</u>, Token Ring, FDDI, etc.
 - Point-to-point последовательные каналы: PPP, HDLC, Frame Relay точкаточка / подинтерфейсы ATM
 - Многоточечные каналы со скоростью, больше чем Т1: <u>ISDN PRI</u>, SMDS, Frame Relay
- Hellos передаются каждые 60 с на следующих каналах:
 - Многоточечные соединения с полосой пропускания меньше Т1: ISDN BRI, Frame Relay, SMDS, etc.
- Таким образом, hello отсылаются менее часто в каналах малого быстродействия

Типы сетей

- Point-to-Point, например HDLC: соседские отношения формируются с роутером на другом конце
 - Интервал Hello time: 5 сек
- Broadcast multiaccess (BMA), например, Ethernet: соседские отношения формируются динамически, используя групповую передачу Hello-pakets.
 - Интервал Hello time: 5 сек
 - Групповой адрес: 224.0.0.10
- Nonbroadcast multiaccess (NBMA): соседские отношения формируются вручную.
 - Интервал Hello time: 60 сек

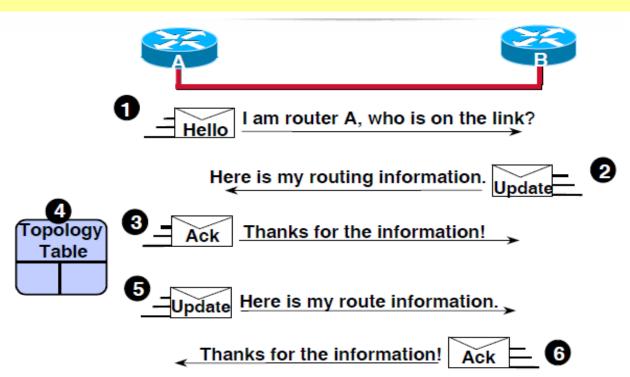
EIGRP Таблица соседей

- Каждый роутер сохраняет информацию о соседях в Таблице соседей
 - Адрес роутера и интерфейс, через который может быть достигнут сосед
 - HoldTime, передающиеся в hello сообщении
 - ✓ HoldTime количество времени, которое роутер должен считать соседа как достижимого и операционного
- Сосед объявляется "мертвым", когда никакие EIGRPpackets не получены в пределах интервала хранения (hold interval)
 - Не только Hellos может сбросить HoldTime таймер хранения
 - HoldTime по умолчанию в три раза превышает hello-interval

HoldTime = 3 x Hello time interval

- HoldTime и Hello time interval могут быть сконфигурированы на интерфейсе
 - ip eigrp hello-interval
 - ip eigrp hold-time

Состав таблицы соседей


```
p2r2#show ip eigrp neighbors
IP-EIGRP neighbors for process 400
H Address
                Interface Hold Uptime
                                        SRTT
                                              RTO Q
                                                      Sea
                           (sec)
                                        (ms)
                                                  Cnt Num
1 172.68.2.2
                           13 02:15:30
                                          8
                                              200
                To0
  172.68.16.2
              Se1
                           10 02:38:29
                                         29
                                              200
```

- Neighbor <u>address</u> (Адрес соседа) L3-адрес соседа.
- Queue (Очередь) показывает число пакетов в очереди отправки.
 - Если постоянно больше нуля, то может быть проблема перегрузки.
 - Если Нуль нет никаких пакетов EIGRP в очереди.
- Smooth Round Trip Timer (SRTT) взвешенное (среднее) время распространения пакета в прямом и обратном направлениях.
 - используется, чтобы вычислить интервал повторной передачи (RTO retransmission time out).
- Hold Time интервал ожидания посылки от соседа, прежде чем рассматривать его как недоступный.
 - Первоначально ожидались только hello, в текущих Cisco IOS любые EIGRP пакеты

EIGRP процессы и технология

- EIGRP надежная передача сообщений Update, Query, Reply всем соседям
 - Сообщения нумеруются и подтверждаются
 - stop and wait механизм исправления ошибок
 - Число повторных передач = 16, затем сосед сбрасывается
- Поддерживает смешанную передачу много- и одноадресных пакетов. Что эффективней, то используется:
 - Например, в broadcast/multicast сетях используется один пакет для всех роутеров с групповым адресом: 224.0.0.10
- Если один или более соседей при multicast рассылке медленно подтверждают, все другие соседи страдают от этого
 - Решение: неподтвержденный multicast пакет будет повторно передаваться как unicast пакет медленному соседу

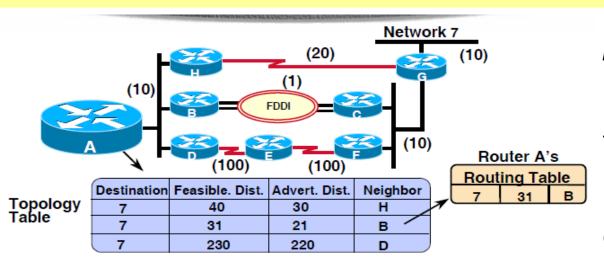
Обнаружение Маршрутов в Routere A

Процессы установления соседских отношений и обнаружения маршрутов происходят одновременно

- 1. Роутер A, новый, отсылает hello через все интерфейсы
- 2. Роутер В, получив hello, отвечает update пакетами о известных маршрутах в своей таблице маршрутизации, кроме полученных через тот же интерфейс (split horizon). Кроме того, у этих пакетов обновления есть набор битов Init, указывая, что это процесс инициализации
- 3. Роутер A подтверждает update пакеты каждому соседу пакетом Ack
- 4. Роутер A сохраняет update пакеты в свой таблице топологии
- 5 Роутер A отправляет полученные update пакеты другим роутерам, скорректировав метрику
- 6. Дугие роутеры подтверждают полученные update пакеты

Когда все update получены, роутер готов выбрать (пометить) основные и резервные в таблице топологии

Обнаружение Маршрутов


- EIGRP ключевые характеристики :
- Вычисляются основные и резервные маршруты, которые сохраняются в таблице топологии (до шести до места назначения).
 - Основные маршруты перемещаются в таблицу маршрутизации.
- поддерживается несколько типов маршрутов: внутренний, внешний (non-EIGRP), и сводные маршруты.
- Используется составная метрика IGRP, основанная на пяти критериях.
- Используемые критерии по умолчанию:
 - Пропускная способность самая маленькая пропускная способность между источником и местом назначения
 - Задержка Совокупная интерфейсная задержка вдоль пути
- Дополнительные критерии -не рекомендуются использовать, поскольку обычно приводят к частому перерасчету топологической таблицы
 - Надежность Худшая надежность между источником и местом назначения, основанным на сообщениях проверки работоспособности
 - Загрузка Худшая загрузка на пути между источником и местом назначения, основанным на битах в секунду
 - МТU Самый маленький МТU в пути
- Используется DUAL алгоритм, гарантирующий отсутствие петель маршрутизации

Расчет метрики

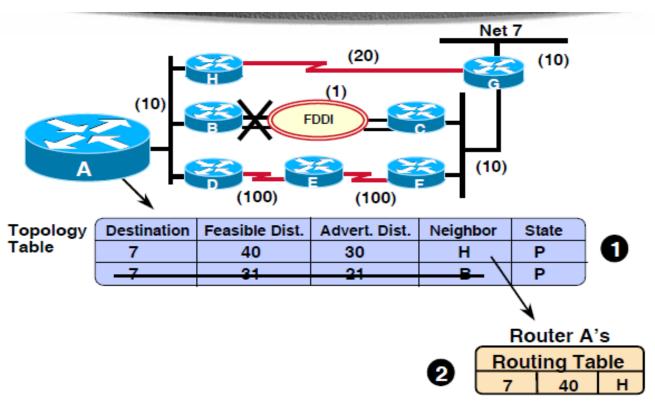
- Metric = [K1 x BW + (K2 x BW) / (256 Load) + K3 x Delay] x [K5 / (Reliability + K4)]
 - По умолчанию: K1 = 1, K2 = 0, K3 = 1, K4 = K5 = 0
- Delay Совокупная интерфейсная задержка вдоль пути
 - Delay = Delay/10
- Bandwidth самая маленькая пропускная способность между источником и местом назначения
 - Bandwidth = 10000000/Bandwidth= 10⁷ / Bandwidth
- В основных условиях значения К1, К2, К3, К4, и К5 представляют Пропускную способность, Загрузку, Задержку, МТU, и Надежность соответственно
- Значения коэффициентов 'К' переносятся в Пакетах hello
 - Несогласованные коэффициенты могут привести к сбросу СОСЕДА
 - Только К1 и К3 используются, по умолчанию.
 - Изменять эти 'К' следует чрезвычайно осторожного, их надо планировать, если неправильно сеть может не сходится

.

Выбор Маршрутов

B is current successor (lowest FD)
H is the feasible successor (AD < FD)
D is not a feasible successor (AD > FD)

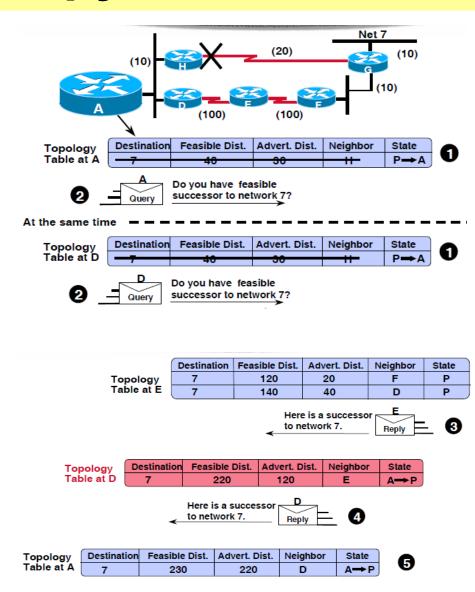
аdvertised distance — распространяемая метрика feasible distance — выполняемая метрика, лучшая метрика из всех распространяемых от соседей (NextHop) + метрика линка Например лучший путь от A до сети 7, через роутер B: advertised distance = 21 feasible distance = 31 $FS = AD_B + метрика$ от A до B


- next-hop router(s), выбранный()е в качестве лучшего (их), называется (ются) *successor (преемник)*
- next-hop router(s) для резервного пути называются feasible successor (выполнимый преемник). Их может быть несколько
- Если маршрут successor больше не действителен, и есть feasible successor, он заменяет successor в таблице маршрутизации без перевычисления
- У feasible successor маршрутов распространенное расстояние advertised distance должно быть меньше чем выполнимое расстояние (feasible distance) маршрута преемника (successor)
- successors и feasible successors сохраняются в таблице топологии, наряду со всеми другими маршрутами, называемыми возможными преемниками (possible successors)
- Единственные удаляемые маршруты, у которых есть метрика = бесконечность (недостижимой)

EIGRP процессы и технология

3. Машина с конечным числом состояний алгоритма DUAL

- Реализует процесс принятия решений для всех маршрутов
- Эффективный маршрут без петель помещается в таблицу маршрутизации, основываясь на допустимых роутерах
- допустимым роутером_считается сосед, используемый для пересылки пакетов к приемнику с наименьшими затратами и гарантирующим отсутствие маршрутных петель
- Если у соседа изменилась метрика или топология, DUAL проверяет допустимые маршрутизаторы
- Если будет найден хотя бы один, DUAL использует его во избежания повторного вычисления маршрута
- При отсутствии допустимых роутеров и повторных извещений о приемнике от соседей повторное вычисление маршрута, называемое диффузионным вычислением, все-таки выполняется


Поддержание Маршрутов - Пассивный

- Роутер В, узнав об изменении, распространяет multicasting update
- DUAL ищет в топологической таблице feasible successors, и если он есть то становится successors, заносится в таблицу маршрутизации и вновь вычисляются feasible successors
- Если feasible successors найден, маршрут остается пассивным, и никакое взаимодействие с соседними маршрутизаторами не требуется. Это самый быстрый тип сходимости для EIGRP

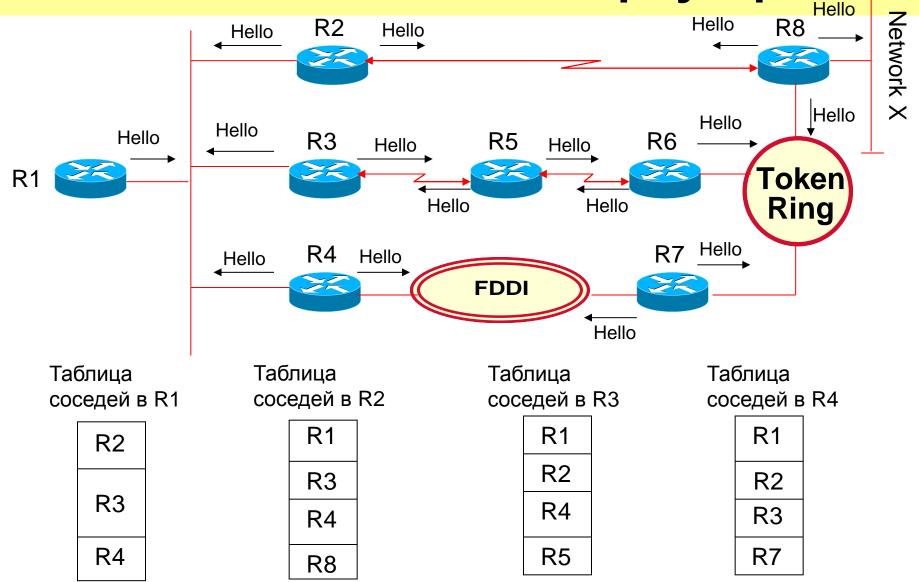
Поддержание Маршрутов – Active

- Когда ссылка перестала работать и если выполнимый преемник не доступен, следующий процесс сопровождается
- Роутер А отмечает
 отказавший маршрут как в
 "активном" состоянии в
 таблице топологии.
 - Когда маршруты работают хорошо, они находятся в "пассивном" состоянии.
 - Продолжить используя BSCN.pdf
 - 29/04/2011

Removing Routes

Повторим кратко

EIGRP таблицы соседних роутеров


1. Каждый EIGRP роутер должен обнаружить соседей

- используются небольшие пакеты—приветствий (Hello-pakets)
- роутер не ждет подтверждения для Hello (ненадежная передача)
- типы сетей
 - ✓ двухточечная сеть (Point-to-point network)
 - ✓ Сети множественного доступа с широковещательные с поддержкой broadcast/multiaccess (BMA)
 - ✓ Не широковещательные, не поддерживают broadcast/multiaccess (NBMAs)

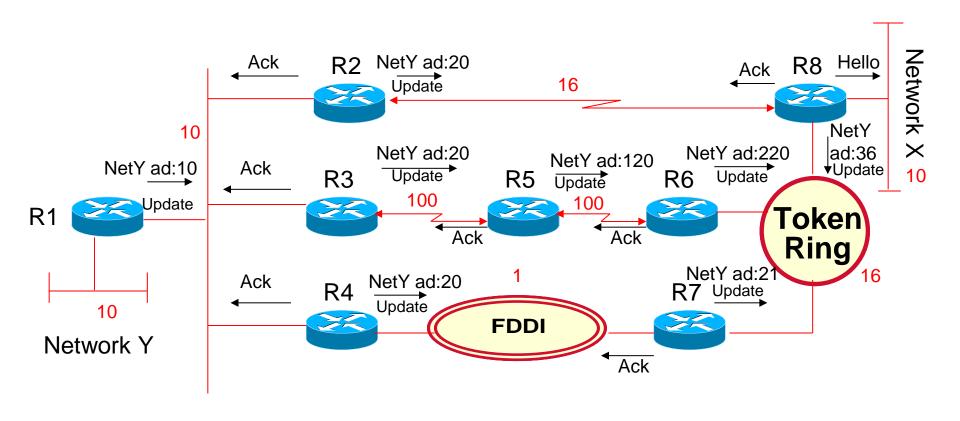
2. Каждый роутер строит таблицы соседних роутеров

- основан на Hello-pakets, в котором сообщается время работоспособности роутера
- когда обнаружен сосед, его адрес и интерфейс заносится в таблицу роутеров
- Если Hello-pakets не получен в течении времени работоспособности роутера, DUAL оповещается об изменении топологии
- HoldTime интервал времени, в течении которого роутер ожидает Hellopakets,брабатывает соседа: 3* Hello интервала

EIGRP таблицы соседних роутеров

EIGRP Топологические таблицы

2. В топологической таблице содержатся все адреса приемников, о которых оповещают соседние роутеры


- обмен информацией происходит через пакеты обновлений (Update packets)
 - ✓ Пакеты обновлений (Update packets)
 - содержат порядковый номер поля в заголовке и должны быть подтверждены получателем (надежная передача)
 - посылаются в следующих сучаях:
 - когда сосед представляется первым (packetr's dest. addr is an unicast)
 - Когда сеть терпела неудачу (packetr's dest. addr. is 224.0.0.10).
 - когда есть метрические изменения для определенного адресата (packetr's dest. addr. is 224.0.0.10)

EIGRP Update packets

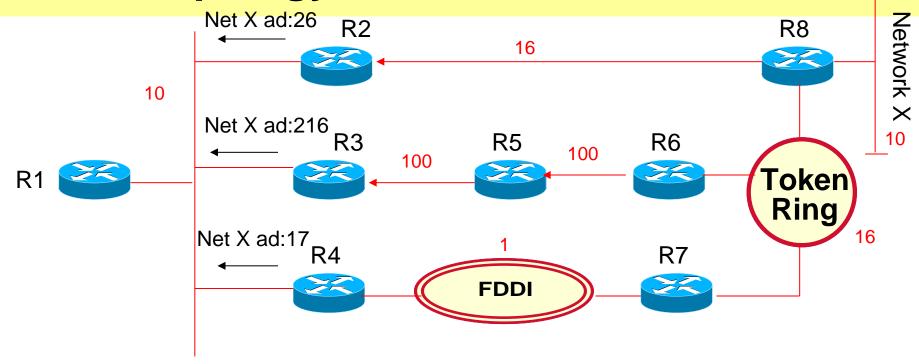
Update packets

 В отличие от OSPF, каждый EIGRP роутер изменяет любой полученный пакет обновлений. И посылает пакет с собственным порядковым номером соседям

EIGRP Update packets

Распространяемые обновления (Update) ad = распространяемое расстояние (метрика)

EIGRP Топологическая таблица

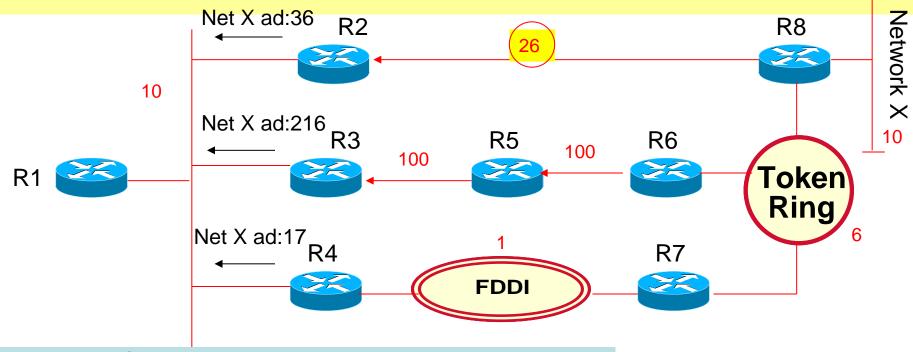

Таблица Топологии

- Таблица содержит все пункты назначения, объявленные соседними роутерами. К каждому роутеру маршрутизатору привязан адрес пункта назначения и список соседей, объявивших данный пункт назначения.
- С таблицей работает DUAL, чтобы определить Successors (преемник, последующий маршрутизатор) и FS (потенциально последующий маршрутизатор).
- Successor: преемник
 - ✓ Сосед, который был выбран как next hop для пункта назначения, он и фиксируется в таблице маршрутизации
- Feasible Successor (FS): подходящий преемник
 - ✓ является запасным маршрутом текущего Successors
- Feasiblity Condition (FC): статус выполнения
 - ✓ A condition that is met when the lowest of all neighbors" costs plus the link cost to that neighbor"s advertised cost is less that the current successor cost
 - ✓ <u>Feasible Successor</u> -ом становится маршрут, в котором рекламируемая стоимость меньше той, которая используется

EIGRР Идея

- Feasible Distance (FD), лучшая дистанция— наименьшая суммарная метрика к цели (включая прилегающий участок пути)
- Advertised Distance Отчетная (присланная) дистанция (RD) метрика к цели, сообщаемая соседним приемным роутером (не включает прилегающего участка).
- Подходящий преемник (FS) путь с отчетной дистанцией меньшей, чем лучшая дистанция (т.е. остается положительная разница метрики для прилегающего участка)
- Алгоритм работает так,
 - что если есть два и более подходящих преемника (FS), то переключение маршрута происходит мгновенно, как только выбранный путь прерывается.
 - Если же существует только один подходящий преемник и через него идет работа и он обрывается, то роутер запрашивает всех своих соседей о отчетной дистанции к цели, вычисляет новую лучшую дистанцию и перестраивает параметры в таблице.

EIGRP Topology table и feasible successor—


ad = Advertised Distance распространяемая метрика

Часть Топологической таблицы R1

	Network	Рекламируемая метрика Advertised Distance	исполняемая метрика Feasible Distance	Neighbor
Successor	X	17	27	R4
	X	216	226	R3
Feasible Successor	X	26	36	R2

03.04.2011 IGRP и EIGRP 50 © Масич Г.Ф.

Таблица топологии EIGRP без feasible successor

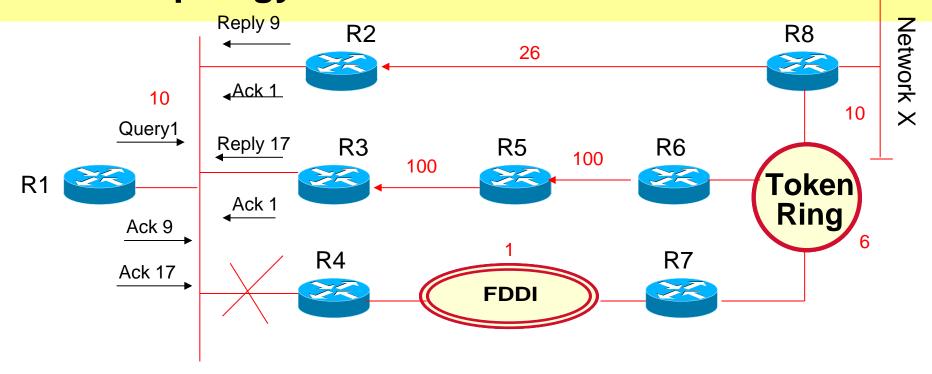
Het Feasible Successor, поскольку существующие Advertised Distance (216 и 36) больше текущей Feasible Distance (27)

Часть Топологической таблицы R1

Successor		
Нет Feasible		
Successor!!!		

Network	Advertised Distance	Feasible Distance	Neighbor
Х	17	27	R4
Χ	216	226	R3
X	36	46	R2

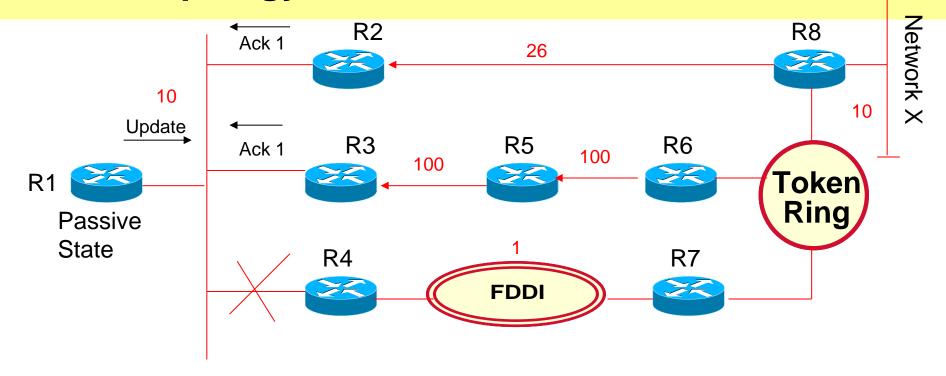
EIGRP активное состояние


- Если последующий роутер (successor) исчезает из таблицы топологии из-за изменения сети и есть потенциально последующий роутер (FS),то DUAL помещает маршрут в пассивное состояние
 - Состояние роутера после потери преемника и наличии FS
 - Пассивное состояние роутер не выполняет вычисление маршрута
- Если последующий роутер (successor) исчезает из таблицы топологии из-за изменения сети и нет потенциально последующего роутера (FS),то DUAL помещает маршрут в активное состояние
 - Активное состояние роутер выполняет вычисление маршрута

EIGRP активное состояние

• Активное состояние

- Состояние маршрутизатора, когда он потерял своего преемника (successor) и не имеет никакого другого фактического приемника (feasible successor (FS)). Маршрутизатор вынужден вычислить маршрут к адресату. И посылает пакет запроса (query packet) всем его соседям.
- Пакет запроса (должен быть подтвержден получателем)
 - ✓ посылается всем соседям, когда роутер входит в Active адресата и просит информацию относительно того адресата. Если он не получит ответы от всех соседей, маршрутизатор останется в активном состоянии и не запустит вычисления для нового successor.
- Пакет ответа (должен быть подтвержден от получателя)
 - ✓ Посылается каждым EIGRP соседом, получившим запрос. Если у соседа нет информации, он делает запрос своим соседям


EIGRP Topology table without feasible successor

Part of R1r's Topology Table

	Network	Advertised Distance	Feasible Distance	Neighbor
Successor	X	17	27	R4
Нет Feasible	X	216	226	R3
Successor!!!	X	36	46	R2

EIGRP Topology table without feasible successor

Part of R1r's Topology Table

Network	Advertised Distance	Feasible Distance	Neighbor
X	216	226	R3
X	36	46	R2

Successor

EIGRP совместимость (Compatibility)

• Маркировка маршрутов

- В EIGRP есть понятие внутренних и внешних маршрутов.
 - ✓ Внутренние маршруты
 - Которые порождены (произошли) в пределах EIGRP автономной системы (AS).
 - ✓ Внешние маршруты
 - Которые были изучены другим протоколом маршрутизации или находятся в таблице маршрутизации как статические маршруты.

Перераспределение маршрута

 в случае IGRP сделано автоматически, когда EIGRP и IGRP принадлежат одной автономной системе (совместимый показатель!!!). IGRP получил маршруты, обработанные как внешние в EIGRP (также OSPF, RIP,EGP, BGP...)

Совместимость EIGRP

Стек протокола EIGRP

OSI stack

